Tuesday, August 3, 2010

CONTACT ANGLE MEASUREMENT





Contact Angle: Theory
The following is a short introduction to the concepts involved in the measurement of contact angles. Included is an introduction to the techniques involved and some practical advise. For those interested in further information a list of references appears at the end of this chapter.
What is contact angle?
Contact angle ,q, is a quantitative measure of the wetting of a solid by a liquid. It is defined geometrically as the angle formed by a liquid at the three phase boundary where a liquid, gas and solid intersect

It can be seen from this figure that low values of q indicate that the liquid spreads, or wets well , while high values indicate poor wetting. If the angle
q is less than 90 the liquid is said to wet the solid. If it is greater than 90 it
is said to be non-wetting. A zero contact angle represents complete wetting.


Hysteresis: For any given solid / liquid interaction there exists a range of contact angles which may be found. The measurement of a single static contact angle to characterize the interaction is no longer thought to be adequate. The value of static contact angles are found to depend on the
recent history of the interaction. When the drop has recently expanded the angle is said to represent the ‘advanced’ contact angle. When the drop has recently contracted the angle is said to represent the ‘receded’ contact angle. These angles fall within a range with advanced angles approaching a maximum value and receded angles approaching a minimum value.
The difference between the maximum(advanced) and minimum(receded) contact angle values is called the contact angle Hysteresis. A great deal of research has gone into analysis of the significance of hysteresis. It has been used to help characterize surface heterogeneity, roughness and mobility. You are recommended to the papers listed in the reference of this section for details on experiments regarding hysteresis.
Contact angle can also be considered in terms of the thermodynamics of the materials involved. This analysis involves the interfacial free energies between the three phases and is given by:
glv cos q = gsv - gsl
where glv ,gsv and gsl refer to the interfacial energies of the liquid/vapor, solid/vapor and solid/liquid interfaces.

No comments:

Post a Comment